
J2

J2 ii

COLLABORATORS

TITLE :

J2

ACTION NAME DATE SIGNATURE

WRITTEN BY August 23, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

J2 iii

Contents

1 J2 1

1.1 J2 . 1

1.2 TABLE OF CONTENTS . 2

1.3 REQUIRED PARAMETERS . 2

1.4 OPTIONS . 3

1.5 EXAMPLES . 5

1.6 USING THE CUSTOM MODE . 6

1.7 MODIFYING THE PROGRAM . 9

J2 1 / 9

Chapter 1

J2

1.1 J2

DOCUMENTATION FOR THE J2 PATTERN GENERATOR
--
Jack Boyce (jboyce@tybalt.caltech.edu), 12/91

J2 is a program to generate juggling patterns. All parameters and options
are entered on the command line, in order to make the code portable.

There are 4 basic modes, or types of patterns which can be found:
(1) solo asynchronous juggling,
(2) solo synchronous juggling,
(3) two person passing, and
(4) a custom mode.

Mode (1), or ’site swap’ mode, is the default. For an explanation of the
notations used in each of these modes (except for (4), described below),
refer to the file notation.doc.

In short, you give the program a list of parameters and it finds ALL
patterns which fit the given constraints. Since the number of patterns can
be very large, it is wise to have an idea of what kinds of patterns you
want when you ask the program to do something.

TABLE OF CONTENTS

REQUIRED PARAMETERS

OPTIONS

EXAMPLES

USING THE CUSTOM MODE

MODIFYING THE PROGRAM

J2 2 / 9

1.2 TABLE OF CONTENTS

MAIN
J2

1.
REQUIRED PARAMETERS

2.
OPTIONS

3.
EXAMPLES

4.
USING THE CUSTOM MODE

5.
MODIFYING THE PROGRAM

1.3 REQUIRED PARAMETERS

Three parameters are required by the program. They must be ←↩
specified

on the command line immediately following ’J2’. These numbers are,
in order:

(1) Number of objects juggled
(2) Maximum throw value to use
(3) Pattern length

Obviously, as any of these numbers increases the program will take longer
to run, since there are more possibilities for the computer to consider. If
the computer is taking too long, press any key to exit the program.

Examples are:
j2 3 5 3 -> a list of 3 object tricks including ’441’ and
’531’ (here we are using the default ’site swap’ mode)
j2 5 7 1 -> all we get is ’5’, the cascade. There are no other
valid tricks of length 1.
j2 5 7 5 -> a list containing many interesting 5 object tricks

In some of these runs several of the patterns printed will have portions
before and after, separated by spaces from the patterns themselves. These
are ’excited state’ patterns, discussed in notation.doc. The throws to
the left are starting sequences, those to the right are ending sequences.
Use these throws to get in and out of the trick from the middle of a
cascade. Any pattern without these throws before and after is a ground
state pattern.

Important: The throws in the starting/ending sequences are not parsed by
the multiplexing filter, so they may require you to make 2 simultaneous
catches from different places. The ’-x’ exclude flag doesn’t apply either.
The routine for finding starting/ending sequences was a lot easier to write
without taking these into account. [See below for explanations of these
terms.]

Next item:
OPTIONS

J2 3 / 9

1.4 OPTIONS

Flags following the 3 parameters discussed above activate various ←↩
options.

These can be mixed at will, unless there is a direct conflict (for example,
the -g and -ng flags). These flags and their effects are:

-s Find solo synchronous patterns (gets out of
default site swap mode).

-p Find two person passing patterns.

-c <file> Go into custom mode. The computer reads in a definition
file to figure out what kind of patterns you want. (See
the section below for more information.)

-g Print only ground state patterns.

-ng Print only excited state patterns (no ground).

-se Disables printing of starting and ending sequence for
excited state tricks, printing ’*’s instead. For passing
and multiplexing these sequences can become long and
cumbersome.

-n Computer counts the number of patterns found and prints
it at the bottom of the outputted list.

-no Like -n, but print the number of patterns only
(suppress printing of patterns).

-write <file> Writes output to the specified disk file

-noprint Disables screen printing

-noexit As a default, the program will stop running when the user
hits any key. This flag disables the exit procedure.

-f The ’full’ flag, which needs some explanation. Any two
patterns with the same starting and ending sequences
(including none, for two ground state patterns) can be
adjoined to get another valid pattern which has the same
starting and ending sequences as each of its parents. For
example, the 3 object ground state tricks 3, 441, and 531
can be stuck together to get 5313441, a valid site swap.
Ordinarily J2 will not display patterns which are
composed in this way of two or more smaller ones. Using
the -f flag overrides this, printing even the
decomposable patterns.

-simple Related to the -f flag above. As the default J2
actually does print some decomposable patterns, such as
the 3 object trick 45141, a rotated composition of 51 and

J2 4 / 9

414. The reason for this is that 414 is not listed; its
ground state rotation 441 is instead. J2 excludes only
those compositions which can be formed from two or more
tricks LISTED by the program. The -simple flag overrides
this, removing all compositions. Be aware that some valid
tricks, such as 45141, will not be obvious from the
program’s output. (It is not obvious that 441, when
rotated, has the same starting and ending sequences as
51.) As a theoretical note, using the -simple flag makes
the number of tricks for a fixed number of objects and
max. throw value a finite number (as opposed to infinite
for the default and -f cases above).

-lame This one is specific to the solo asynchronous mode.
Patterns containing the throwing sequence ’11’ are
eliminated by default, just because I think it’s lame. If
you want to include these, use this flag.

-x <throw 1> <throw 2> ... The exclude option gets rid of
those patterns containing the listed throw values (for
passing this applies only to self-throws). Very low
throws (like ’3’) are sometimes hard to do in a pattern
containing other high ones. Excluding several throws also
speeds up the program quite a bit. Example: j2 5 7 5 -f
-x 0 3 -g

-i <throw 1> <throw 2> ... Each pattern listed must
contain at least one of each of the given self-throw
values.

-xp <throw 1> <throw 2> ... Used to exclude passing throw
values. Again, low passes are hard to do, and this lets
you get rid of them. This flag has no effect when not
passing.

-m <number> Turns on multiplexing. By default the
computer does not find multiplexing patterns; this flag
allows you to. The <number> following the flag is the
maximum number of throws you want any hand to make at any
time. Usually this will be 2, and very rarely more than
3. As <number> increases the program slows down a lot.

-mf When I first implemented the multiplexing option I
noticed that most of the patterns found by the computer
required the juggler to make 2 or more catches
simultaneously with the same hand. This is doable if the
objects come from the same place (a clump of 2), but it’s
really tough otherwise. Therefore I added a filter which
gets rid of all multiplexing patterns which require the
simultaneous catching of objects from 2 different places
(unless one of the caught "throws" was a hold). This
filter is the default; if you want to disable it use the
-mf flag.

-d <number> The delay flag only has an effect when
passing. If you are doing a standard ground state passing
pattern (such as <3p|3p><3|3> for 6 objects), you and

J2 5 / 9

your partner can switch into any ground statE pattern
instantly, with no intermediate throws. However, many of
the patterns printed will require you both to start
throwing differently at the same time (you have to count
down to the start of the pattern, to ensure
synchronization). It is nice to allow for a communication
delay, though, so that person #2 has time to react when
person #1 starts throwing a trick (many of the popular
passing tricks have this property). This is what the -d
delay flag does. The <number> is the number of throws
after the beginning of the trick before person #2 needs
to throw something different from what he was while doing
a standard ground state pattern (like <3p|3p><3|3>). A
few words need to be said about what comprises a
"standard passing pattern". These are those patterns
which are composed of ground state patterns of length 1.
For 6 objects, for example, we type ’j2 6 4 1 -p -g’and
get two ground state patterns of length 1: <3|3> and
<3p|3p>. Any combination of these stuck together
qualifies as a "standard ground state pattern"; these
include standard passing <3p|3p><3|3>, ultimate passing
<3p|3p>, and so on. The delay flag lists all patterns
which provide a communication delay of at least <number>
for at least ONE of these "standard passing patterns".

As an example, we type ’j2 6 4 3 -p -d 2’ and the list
includes the two patterns: (the guy in the left slot is
the one "leading" the tricks) <4|3p><4p|3><3|1> which
assumes the people were doing the standard <3p|3p><3|3>
before the trick was being done. Note that person #1 has
to begin when his partner is throwing a pass.
<4p|3p><4p|3p><3|1> which assumes the people were
ultimate passing before starting the trick. Some of the
patterns will require a 2-count passing pattern to get
the requested communication delay, others a 3-count, and
so on. When you use the -d flag just scan the list for
the patterns relevant to your case. The -d flag also
implies a ’-g’ flag. Only ground state patterns are
listed.

-l <person> For use with the -d delay flag above. This
sets the person who is the "leader". The default is
person #1, whose throws are printed in the left position
of each < | >.

Next item:
EXAMPLES

1.5 EXAMPLES

Running through these with the program should help give you an ←↩
idea

of what it can do:

J2 6 / 9

j2 3 5 3 Simple site swaps
j2 3 5 3 -f Decomposable patterns too
j2 3 5 3 -f -g -n Other flags
j2 3 5 4 -n Patterns of length 4
j2 3 5 4 -lame -n Includes trick ’5511’ in listing
j2 5 5 3 -m 2 -g Gatto does ’24[54]’ in his act
j2 5 7 5 -x 0 -m 2 -g A LOT of interesting multiplexing

tricks
j2 5 6 4 -s Some fun 5-ball synchronous patterns
j2 6 4 2 -p -f -g 2 person, 6 object passing patterns,

includes standard 2-count, etc. Most
are trivial, a few interesting.

j2 6 3 3 -p -m 2 -d 3 Shows the ’left-hand single’ passing
trick mentioned in notation.doc. Note
that the ’-g’ and ’-d’ options here
vastly reduce the number of tricks.

j2 6 3 3 -p -m 2 -d 3 -xp 1 Same as above, but eliminates
passed 1s (they’re too low and fast).

j2 10 6 2 -p -g -f 10 object passing
j2 9 3 1 -c 3person Basic 3 person, 9 object patterns

j2 9 4 2 -c 3person -g -xp 1 -no A lot of patterns here
j2 9 3 3 -c 3person -m 2 -d 3 -x 0 1 -xp 1

Finds a bunch of multiplexing tricks
for 3 person, 9 object passing. The
filters are crucial in limiting the
number of tricks to a reasonable size.

Next item:
USING THE CUSTOM MODE

1.6 USING THE CUSTOM MODE

The custom mode allows you to find patterns for just about any ←↩
juggling

situation imaginable, beyond the 3 basic built-in modes. If you are doing 3
person passing, or if your passing partner breaks an arm and can only use
the other one, or if you meet an alien with 4 arms, or if you want only
those site swap multiplexing patterns which require multiple throws from
the right hand, any of these cases can be handled.

All you are required to do is set up a file containing the necessary
information, and then give the filename to J2 using the -c flag, as in
’j2 9 4 3 -c 3person’,
where ’3person’ is the file which has been set up to define 3 person
passing. All of the command line options listed above work in custom mode
too, so you can find multiplexing patterns, ground state tricks, and so on.
(The exception is the -lame flag, specific to site swaps.)

J2 7 / 9

The definition file contains the particular throwing rhythm that you want
to use. Let each hand in the pattern have its own line, and let the time
axis be horizontal. Put a ’1’ at the times that each hand makes a throw.
For asynchronous solo juggling, we would have something like:

Right hand: 1 1 1 1 1 1 1 1 1 1 1 . . .
Left hand: 1 1 1 1 1 1 1 1 1 1 1 . . . time ->

^ ^
A single horizontal space equals one unit of throw value, so an object
thrown with a ’4’ at the first arrow above is thrown again at the second
one. For a given site swap trick, you can draw on a diagram like the above
an arrow for each throw, from where it is thrown to where it is thrown
next. The horizontal spacing on the above diagram is critical, since it
determines what throw value is needed to get from one throwing position to
another.

For synchronous solo juggling, we have:

Right hand: 1 1 1 1 1 1 1 1 1 1 1 . . .
Left hand: 1 1 1 1 1 1 1 1 1 1 1 . . .

Note the spaces between the 1s in the lower case; if we were to remove
these each hand would be throwing twice as often as it did in the upper
case, which we don’t want. Anyway, each of these throwing rhythms is
periodic, so we can just write the repeated unit:

|1 | for the top, |1 | for the bottom
| 1| |1 |

It is this repeated unit that you specify in the definition file, along
with two other numbers for each hand: The person number associated with the
hand (must start with person #1), and the throw value for that hand that is
to be considered a hold (this is for the multiplexing filter). The format
is, for the two cases above:

1 |1 | 2 and 1 |1 | 2
1 | 1| 2 1 |1 | 2
^ ^-hold throw

person # that hand belongs to

Subtleties: Each of the 1s in the throwing rhythms above actually signifies
that at most one throw can be made from that position. If we want to find
multiplexing patterns where only our right hand multiplexes (at most 2
throws at a time), we can write:

1 |2 | 2 or 1 |2 | 2
1 | 1| 2 1 |1 | 2

in the definition file (the spaces in the rhythm are implied 0s). The only
other subtlety has to do with the fact that, for asynchronous solo
juggling, both hands never throw at the same time. Therefore we could do
any site swap pattern with a single hand, in theory, if we ran it back and
forth fast enough (we could no longer treat a 2 as a hold, however, but
would have to throw it). We can compress the two hands into one, and the
repeated unit for the asynchronous throwing rhythm is now:

1 |1| 2

J2 8 / 9

We can separate the two hands when we see a pattern because we know that
odd throws cross and even ones don’t.

Other examples of definition files are:

1 |1| 2 for 2 person passing (each person only needs one
"hand",
2 |1| 2 since each is throwing asynchronously)

1 |1 | 2
1 |1 | 2 2 person passing, each person throwing synchronously
2 |1 | 2 (need a separate line for each hand again)
2 |1 | 2

1 |1| 2
2 |1| 2 3 person passing
3 |1| 2

1 |11| 2 Passing between a guy throwing asynchronously and a
2 |1 | 2 guy with one arm.

1 |1 1 | 2 Two asynchronous jugglers passing, one juggling half
1 | 1 1| 2 as fast as the other. Note that I split the hands
2 |1 | 4 up again, since the odds cross/evens don’t rule
2 | 1 | 4 doesn’t work here anymore. Also note the ’4’ hold.

1 |11 | 1 A guy juggling in a R-R-L-R-R-L throwing rhythm. For
1 | 1| 3 the top hand either a 1 or 2 could work as a hold,

depending on the point in the rhythm. Choosing 2 would
give you a different set of multiplexing ptrns.

Patterns are printed in custom mode using a notation very similar to that
used for the built-in modes. Instructions for different people are
separated using < |..| >. If a person makes more than a single throw at a
time, the different hand instructions are separated with (,..,).
Multiplexed throws are grouped with [/../]. Each individual throw is
printed in the following manner:

(1) The throw value, or the number of time units until the
object is thrown again. 1 "time unit" is a single character wide
in the specified throwing rhythm.

(2) If the throw goes to another person, print a ’:’ and then
the destination person number.

(3) If the destination person has more than one hand, print
’a’ to mean the first hand listed in the rhythm file, ’b’ the
second hand, and so on.

A little experimentation will no doubt help in understanding this. I tried
to be as intuitive and simple as possible, but still convey the necessary
information.

Next item:
MODIFYING THE PROGRAM

J2 9 / 9

1.7 MODIFYING THE PROGRAM

I have marked places in the code where you can add your own throw and
pattern filters for the built-in modes. (The -x exclude flag is a throw
filter, the -lame flag is a pattern filter, or actually disables one.) You
can also add a throw or pattern filter to use in the custom mode, as well
as your own routine to print custom patterns (if you think the default one
doesn’t do the right job). Add these custom-mode filters and printing
routines at the end of the source code, in the section marked.

This documentation was originally written from Jack Boyce. It was converted
to j2.guide by Werner Riebesel in 5/95 with no changes in the text except
for the added links.

	J2
	J2
	 TABLE OF CONTENTS
	REQUIRED PARAMETERS
	OPTIONS
	EXAMPLES
	USING THE CUSTOM MODE
	MODIFYING THE PROGRAM

